Capacity Building workshop Good practices in motor rewinding

5th March 2018 at Thangadh

Under the project Capacity Building of Local Service Providers (LSPs)

Supported by GEF-UNIDO-BEE Project Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Table of contents

WORKSHOP SUMMARY	1
Overview of workshop	
Summary of points discussed in the meeting	
Feedback forms	
Suggestions by participants	2
Learning's by participants	
ANNEXURE 1: AGENDA OF THE PROGRAM	3
ANNEXURE 2: LIST OF PARTICIPANTS	5
ANNEXURE 3: SELECTED PHOTOGRAPHS OF THE EVENT	13
ANNEXURE 4: SAMPLE FEEDBACK FORMS	15
ANNEXURE 5: COPY OF PRESENTATIONS	19

Workshop summary

Overview of workshop

Capacity Building workshop of Local Service Providers (LSPs) on Good practices in motor rewinding & electrical maintenance was organized by TERI on 5th March 2018, Monday in association with Panchal Ceramic Association Vikas Trust (PCAVT) under GEF-UNIDO project. Total 46 participants were present during the workshop. Plant/industry visit was organized after the class room technical session in the workshop. Agenda of the workshop and list of participants are attached in the annexure 1 and annexure 2 respectively.

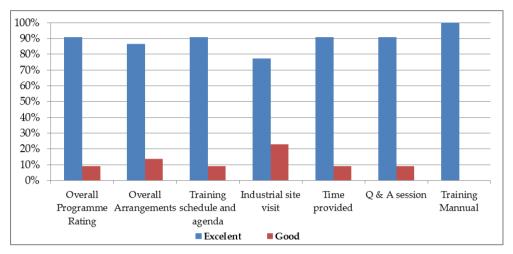
Summary of points discussed in the meeting

Mr. Nanji Bhai trustee of Panchal Ceramic Association Vikas Trust welcomed the participants and thanked the team of TERI and UNIDO for arranging the capacity building workshop. He deliberated the necessity to conserve energy in ceramic manufacturing. He encouraged the motor rewinders and electricians to take the benefit of the training programme and support the industries in the cluster in order to maintain the optimum efficiency.

Inaugural session was attended by other vice presidents/trustees of the PCVAT and they sensitised the participants and encouraged to adopt best operating practices in operations as well as maintenance of the motors.

Mr P Vora, cluster leader, UNIDO gave a brief background of the GEF-UNIDO-BEE project activities in Thangadh cluster and also explained the objective of the workshop. He informed about the current available equipment's at energy cell and how industries can benefit by availing energy audit services at low costs.

Mr. Ayan Ganguly, gave descriptive presentation on best operating practices in electric motor. He explained the primary reasons which may affect the operational efficiency of the motors and how to improve using good practices, which eventually results in significant amount of energy savings. He also shared various case studies on how to optimise the existing electric motors driven system. He explained about the energy efficient machines though required high capital cost can result in lower running cost over a lifetime due to its efficient operation.


Mr. Pawan Tiwari gave presentation on the imperative practices to be adopted during repairing and rewinding of electric motors in order to maintain the efficiency close to design. He considered the material and machinery to be used to avoid the deterioration in efficiency after rewinding. This session of the training introduced the basic tools/machinery is to be used during the rewinding so that stator core and other sensitive parameters can be kept unaltered.

After the lunch, the participants were taken to factory visit for on hands training in Oswal potteries to get hands on training on practical aspects of energy efficiency in electric motors and impact on efficiency after rewinding. Selected photos of the workshop and site visit are attached in the annexure 3.

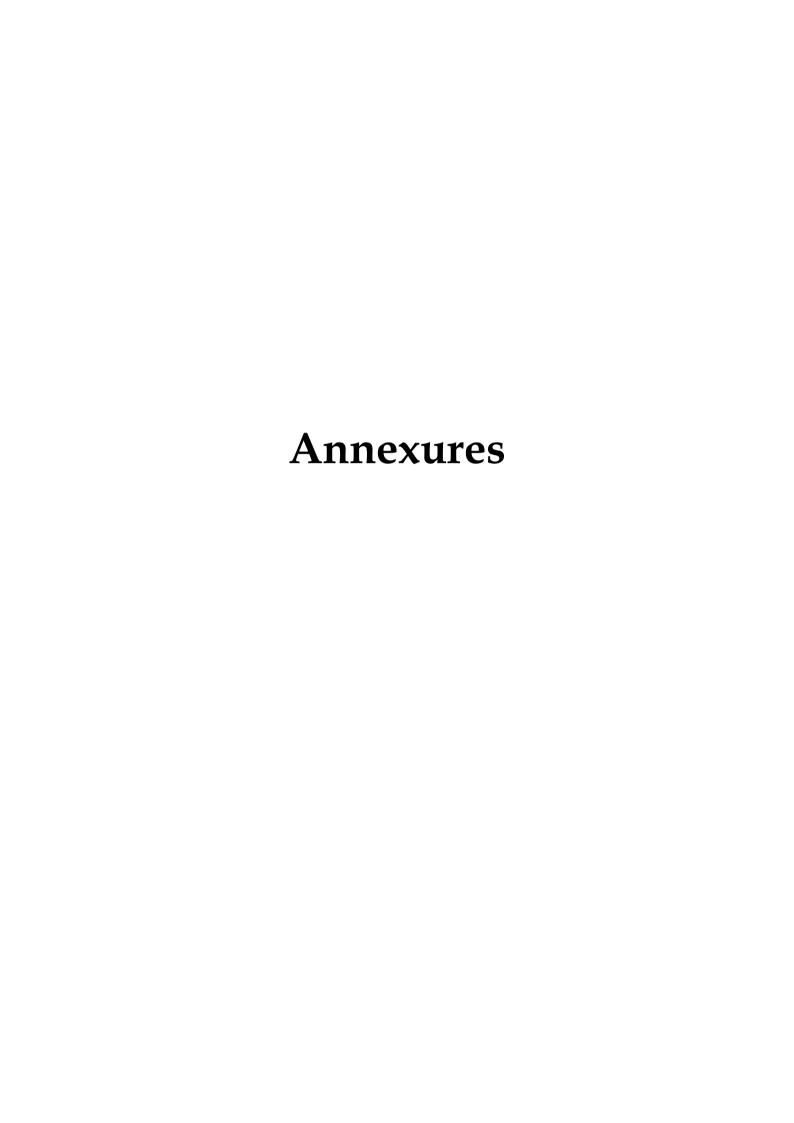
Feedback forms

Based on the analysis of the feedback forms received from the participants, it is observed that workshop was well received by the participants and 77% participants were satisfied with site visit, Q&A session and training module provided to them. About 91% participants have rated overall program as "excellent" while rest of them have rated it as "good". More than 90% of participants were satisfied with arrangements made, training schedule and agenda of the program. Few sample feedback forms are attached in the annexure 4.

Analysis of feedback forms

Suggestions by participants

Some participants have made suggestions as follows;


1) Regular workshops on motor maintenance

Learning's by participants

Some of the topics learned by the participants and mentioned by them are listed below;

- 1) How to do the motor rewinding
- 2) IE3 motors
- 3) Tools used for good motor rewinding

Annexure 1: Agenda of the program

Capacity building workshop Good practices in motor rewinding & electrical maintenance

Monday, 5 March 2018

Auditorium, PCAVT Building,, Thangadh

Under the project:

Capacity Building of Local Service Providers (LSPs)

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Agenda

10:00 - 10:30	Registration
10:30 - 10:40	Welcome Address
	Mr Nanji Bhai, Trustee, Panchal Ceramic Association Vikas Trust
10:40 - 10:50	GEF-UNIDO-BEE project and initiatives in Morbi cluster
	Mr P. Vora, UNIDO Cluster Leader - Thangadh
10:50 - 11:50	Assessment of energy efficiency and energy efficiency improvement opportunities in
	induction motors
	Mr Ayan Ganguly, TERI
11:50 - 12:50	Operation, maintenance and rewinding practices of induction motors
	Mr Pawan Tiwari, TERI
12.45 - 13:00	Q&A
13:00 - 14:00	Lunch
14:00 - 16:00	Site Visit / On-site training
16.00 - 16:30	Feedback from participants
16:30 - 16:45	Vote of thanks

Organized by

Panchal Ceramic Association Vikas Trust

Annexure 2: List of participants

S. No	Name	Organization	Mobile No	Email ID
1.	Mr Prahladda Bhai	New Bharat Motor Rewinding	9825695709	Prahladdabhi20@gmail.com
2.	Mr Ramesh Bhai	New Bharat Motor Rewinding	9819210430	
3.	Mr Gandhani Jaysukh	Motor Rewinder	7575071158	
4.	Mr Shah Santosh	Motor Rewinder	9757236909	
5.	Mr Hiren Akhari	Madhuram Engineers	8758710609	
6.	Harshil Patel	Eleple Engineers Rajkot	9426998966	
7.	Mr Vipul Gandhi	New Bharat Motor Rewinding	7878868250	Vipudabhi2997@gmail.com
8.	Mr Haresh T Parmar	New Bharat Motor Rewinding	9978033025	
9.	Mr Jateen Prem H	New Bharat Motor Rewinding	9099146950	
10.	Mr Prabhu Bhai	New Bharat Motor Rewinding	9913040929	
11.	Mr Prakash M	Jena Motor Rewinding	8469290401	
12.	Mr Jogel Deepak	Motor Rewinding	7069552974	
13.	Mr Vasantbhai Kanji Bhai	Madhuram Engineers	9227604658	
14.	Mr Gunvantbhai Patel	Eleple Engineers Rajkot	9925315800	
15.	Mr Patil Ravi S	Motor Rewinder	8849327975	
16.	Mr Aman Khimavat	Motor Rewinder	7802944924	
17.	Mr Pradip Vora	Cluster Leader Thangadh	9824384234	
18.	Mr Muviya Anurag	Motor Rewinder	9904825481	
19.	Mr Dafdar vijay	Motor Rewinder	8320171772	
20.	Mr Kirtikumar Maru	President	9825217642	
21.	Mr Sureshchandra	Managing Trustee	98252 18177	
	Sompura			
22.	Mr Shantibhai Detroj G	Trustee	98252 22620	
23.	Mr Ankit Bhai M	Varudi Motor Rewinding	8980223816	
24.	Mr Devaji S	New Bharat Motor Rewinding	9928490204	
25.	Mr Ashwin Maru	Sunrise Battery Works	9825215642	
26.	Mr Nanjibhai Bhorniya	Trustee	9825564999	
27.	Mr Yusuf El	Motor Rewinder	9377397320	
28.	Mr Kaneriya Bharat R	Enkar Sanitary	99913079440	
29.	Mr Ukadiya Chetan A	Enkar Sanitary	9979497400	
30.	Mr Suresh Bhai K	Gurukrupa Ceramics	9824497145	
31.	Mr Mansvo Y Theba	Motor Rewinder	9824408250	
32.	Gurukrupa Ceramic		9924211785	
33.	Mr Nanjibhai Patel	Reliance Ceramics	9825564999	reliance_ceramic@yahoo.in
34.	Mr Rehan Mamti	Motor Rewinder	9429423690	
35.	Mr Mer Kashyap	Motor Rewinder	9979972500	
36.	Mr Mukulend Yogesh H	Motor Rewinder	8866688836	
37.	Mr Charadu Dhinjibhai	Top Anchor	9825522421	

S. No	Name	Organization	Mobile No	Email ID
38.	Mr Bhupata C Matwana	Vimal Electric, Thangadh	9825120490	
39.	Mr Pratik Muliya	Jaxesh Motor Rewinding	9998179836	
40.	Mr Archit Shah	Atlas Copco (Global)	992515279	
41.	Mr Abhijit Goswami	Atlas Copco	9904522505	
42.	Mr Kirit S Mokhosa	Oswal Pottery Works	9909596400	
43.	Mr Ishwar H Sarohi	Shree Vertified Works	9825236258	
44.	Mr Mori Pravin B	Mori Electric	9909082580	
45.	Mr Prabu Bhai	Om Motor Rewinder	9879075482	
46.	Mr Mayur Bhai	Mayur Motor Rewinding	9879245499	

Good practices in motor rewinding & electrical maintenance

5 March 2018, Auditorium, PCAVT Building, Thangadh

	s. No	Name	Organization	Mobile No	Email ID	Signature
S	1.	Bentralad Blai	9.2 (mart)	9825695709	proghladdabhi 200	นา.พา.ธาพา
2	2.	add mill Blan	र्मे भारप याड ड	GC96290430		ender ash
S	? з.	Stepped on zan	the Motor Puricula	7575071152		3.4.2.
9	A 4.	Shuh Sowosh	mez Daiers 2	9157236909		5.5
0		Hirren Akhari	Madhibam Engineers	8758710609		Potel H.P.
9	6,	Harsell Patel	Eleple engineers	9426998966		Detel
9		vipul dabhi	New Bhareat motor	7878868250	wiry dabhi 29370	Boeshi

S. No	Name	Organization	Mobile No	Email ID	Signature
¥ 8.	Hurresh T. Rommer	Arev Bhazet motor Rivadia	-9978033025		H.T. Par
₹ 9.	John Rever h	men blues midd Roundy	2023146950		J.P. 1
10	MARGIE	ભે ભારત ચીટક જોતાજસ્ત્રાગ	C-C-2 30 40 C-2 C-		P.V - must
P 11	Toukash MI	कार्य यावायक्री	8469290 HOI		pm signa
	Fish PEys	mig2 21418510)	7069 55		J.D.
DP 13	day with singing	मध्यम स्टाम्मायर	9237604658		Qt-
R 14	Counvant bhei fetel.	Elepte Engineers	99253-15800		-br Rod
15	Patil Ravi &	Moder rawInder	8849327945		B
Å 16	taman Khimava	motor & Winder	48029449 Z4		KA.R.
	Prodit vora	Cluster reader	9824384234		PMY

S. N	o Name	Organization	Mobile No	Email ID	Signature
1	MULIZE ANORGE	motok Rewinler	990 1182548		m. A.5
SP:	19 Defou Vijey	Muter Denney	8320171774		tex
	20 Kirlikumay Maru	President	98252 17642		
	21 Sureshchandra Sompura	Managing Trustee	98252 18177		
	22 Skuntikihhi Debroja	Trustee	98252 22620		Hebo
se:	23 A Wit Blen M Qui BAMID. 2020	Varuali - ।	8480223816		due
sh :	24 Econ 2121	बर्ग पारप्र आऽर्	6-0502		2121
	25 Ashwin Mary	Sunsise bottony works	9825215642		Merry
	26 Namjilkai Bhomina	Trustee	98255 64999		
8	27 HUSUF EL, RASMOT	motor Kauxus	9377397320		ne

S. No	Name	Organization	Mobile No	Email ID	Signature
	Soferin Blood R	Litz Loud, Sandas	8313073hho		Blusset
	GsAu. 2000. 20	को ४२ २ नाय	9979147400		CHEKY
30	2322 mil S. Gimb	M 1232341, 2021 MZ	E5327		S.K.B.
	MAGOO. Y. Theba	21/22 Acuses	9824400150		ny
32	325W 2112	1805 - 1.	89065		De
33	Nanjibhai Patel	Reliance Ceramics	9825564999	reliance_ceramic@Yahowin	NBhy
₹ 34	Rohan mamti	Motor rewhen	942942369		Return
SA 35	Mer Kasnyaf	motal Rewinder	9974972500		K.m
g 36	pressurences yourself H.	mokey Reveilmentin	88 666 88836		Que
37	Dhasisher	Tot Archum	3825542)	charad. 4. c. ton	Dane

S. No	Name	Organization	Mobile No	Email ID	Signature
£√38	Myrial Jerranoi Bhupada (Mato	VIMALELE.	9825220490		næ-
A39	Paufik myling	Juxesh motor oi	9998179836		PENIK ?
el 40	Archit Short	Allas Copco (Colobal)	992715549		on pu
£ 41	ABHISTI GOSVAMI	ATLAS Coreo	9904522505		2
	Kirit S, makhasa	Share Corin wiles			Sman
	Ihmos G.	Shore Verter lites	38525636558		15
44.	RID YERSING	आरो हरिस्ट्रीड	6606063760)तिरी अध्यक्तक
45	PAABHUBHAT	OM MOTAR RIWA	9879075482		P. B JUNGKIN

Annexure 3: Selected photographs of the event

Annexure 4: Sample feedback forms

Capacity building workshop

Good practices in motor rewinding & electrical maintenance

Monday, 5 March 2018

Auditorium, PCAVT Building, Thangadh

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Parameter	Feedback		Chemistra .
	Excellent	Good	Average
How would you rate the overall programme?			
How would you rate overall arrangements?	V		
How was the training schedule and agenda?	V		
How was the industrial site visit?			
Do you think that adequate time was provided for each topic?	Yes [No	[]
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [No	
Do you think that the background training manual is informative and useful enough?	Yes []	No	[]
Do you think that the discussion on EE/RE will help you in your work?	Yes []	No	[]
Name two learning, which from this programme you will be able to im	plement in your plant?		
		Pap o	Mou

Organized by

Good practices in motor rewinding & electrical maintenance

Monday, 5 March 2018 Auditorium, PCAVT Building, Thangadh

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Feedback Form for Participants			
Parameter	Feedback	111	M. S.
	Excellent	Good	Average
How would you rate the overall programme?			
How would you rate overall arrangements?			
How was the training schedule and agenda?	10		
How was the industrial site visit?	-1/		
Do you think that adequate time was provided for each topic?	Yes 1	No	[]
Do you think that satisfactory answers were given to your questions during the training programme?	Yes	No	[,]
Do you think that the background training manual is informative and useful enough?	Yes Y	No	[]
Do you think that the discussion on EE/RE will help you in your work?	Yes¶ 1	No	[]
91123 27 96 St		3100	Par 1
Name two learning, which from this programme you will be able to in	mplement in your plant	?	Manager St.
माय रीणकडी	107 5 201	37 0	Aru
			-
Signature: ANURUK Name of participant: MUNI YY ANU	RYUL'S		
2 11001	otho Dem	MAINE	2

Organized by

Good practices in motor rewinding & electrical maintenance

Monday, 5 March 2018

Auditorium, PCAVT Building, Thangadh

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Parameter	Feedback		
	Excellent	Good	Average
How would you rate the overall programme?	2.5		
How would you rate overall arrangements?		V	
How was the training schedule and agenda?			
How was the industrial site visit?			
Do you think that adequate time was provided for each topic?	Yes []	No	[]
Do you think that satisfactory answers were given to your questions during the training programme?	Yes []	No	[]_
Do you think that the background training manual is informative and useful enough?	Yes []	No	[]
Do you think that the discussion on EE/RE will help you in your work?	Yes [N	No	[]
Suggestions & Recommendations for improvement:		SECTION SECTION	THE RESERVE OF THE PARTY OF
Suggestions & Recommendations for improvement:		C	
प्रका का या की का रमड़ा देना	ण घर र	n 2m 3	
y की कायने ने स्मड़ों देना		n 2013	
५ की कायन ने स्मड़ों देना		भ २०१३	
५ की कायन ने स्मड़ों देना		में ये र	
y की कार्यकी का रमड़ों देना भेषा थाजाकी Name two learning, which from this programme you will be able to im b हाइडिसाइ भूमर		n 2/13	
Signature:	plement in your plant?	m 2m 3	
Name two learning, which from this programme you will be able to im DESSIMS YHI 3 HAGE MES Signature: Name of participant: HEHIE MIN MINING		n 2/13	
Signature:	plement in your plant?	m 2m 3	

Organized by

Good practices in motor rewinding & electrical maintenance

Monday, 5 March 2018

Auditorium, PCAVT Building, Thangadh

Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

Evaluation Sheet for Participants

Parameter	Feedback			
	Excellent	Good	Average	
How would you rate the overall programme?	V			
How would you rate overall arrangements?	V,			
How was the training schedule and agenda?				
How was the industrial site visit?	V			
Do you think that adequate time was provided for each topic?	Yes [V]	No	[]	
Do you think that satisfactory answers were given to your questions during the training programme?	Yes [V]	No	[]	
Do you think that the background training manual is informative and useful enough?	Yes [🗸	No	[]	
Do you think that the discussion on EE/RE will help you in your work?	Yes [V]	No	[]	
Suggestions & Recommendations for improvement:	Control of the second second			
Suggestions & Recommendations for improvement: Name two learning, which from this programme you will be able to in	nplement in your plant	?	N41 27 - 21	
production and the second seco		?		

Organized by

The Energy and Resources Institute

Annexure 5: Copy of presentations

Electric Motors

Assessment of energy efficiency and energy efficiency improvement opportunities in induction motors

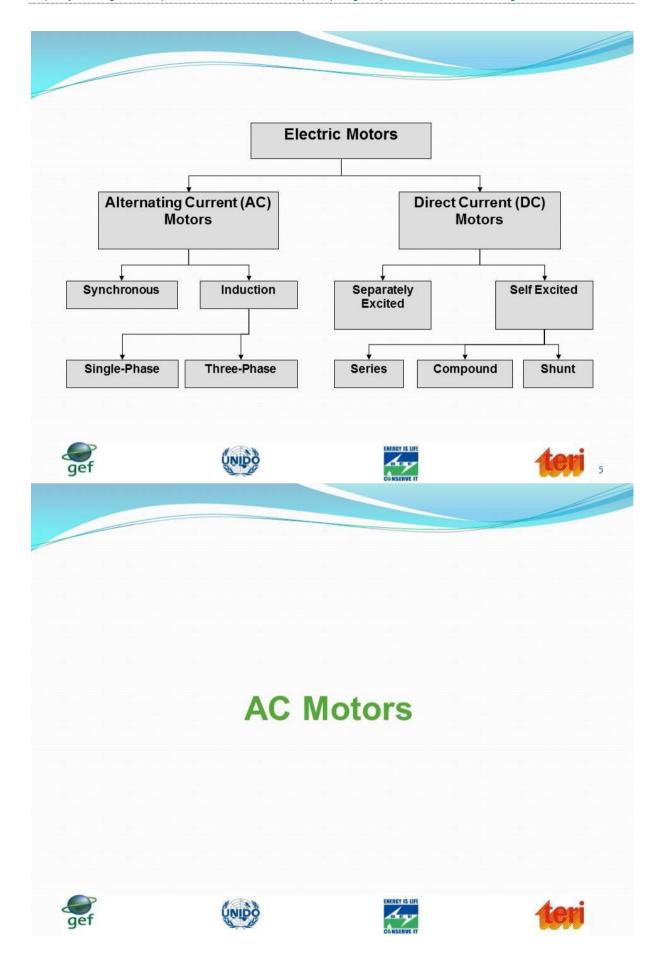
Supported by:

GEF-UNIDO-BEE Project

Promoting Energy Efficiency and Renewable Energy in selected MSME clusters in India

What is an Electric Motor?

- Electromechanical device that converts electrical energy to mechanical energy
- · Mechanical energy used to e.g.
 - · Rotate pump impeller, fan, blower
 - Drive compressors
 - Lift materials
- Motors in industry: 70% of electrical load


What are the type of Electric Motors

- Electrical current reverses direction
- Two parts: stator and rotor
 - · Stator: stationary electrical component
 - · Rotor: rotates the motor shaft
- Speed control is difficult
- Two types
 - Synchronous motor
 - Induction motor

7

Synchronous motor

- Constant speed fixed by system frequency
- DC for excitation and low starting torque: suited for low load applications
- Can improve power factor: suited for high electricity use systems
- Synchronous speed (Ns):

Ns = 120 f / P

F = supply frequency P = number of poles

8

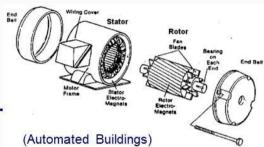
Induction motor

- Most common motors in industry
- Advantages:
 - Simple design
 - Inexpensive
 - · High power to weight ratio
 - Easy to maintain
 - · Direct connection to AC power source

Types of - Induction motor

- Single-phase induction motor
 - · One stator winding
 - · Single-phase power supply
 - · Squirrel cage rotor
 - · Require device to start motor
 - · 3 to 4 HP applications
 - Household appliances: fans, washing machines, dryers

- Three-phase induction motor
 - Three-phase supply produces magnetic field
 - · Squirrel cage or wound rotor
 - Self-starting
 - · High power capabilities
 - 1/3 to hundreds HP applications: pumps, compressors, conveyor belts, grinders
 - · 70% of motors in industry!



Components-Induction motor

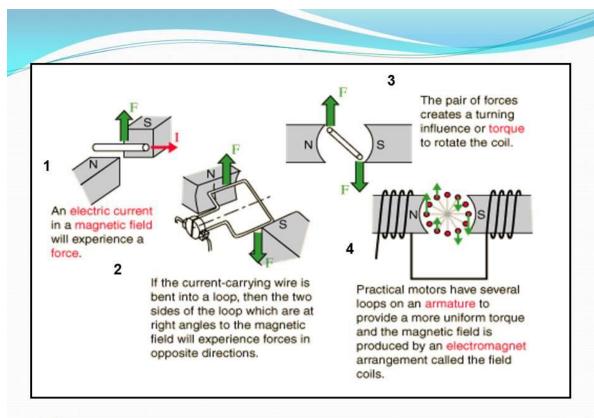
Rotor

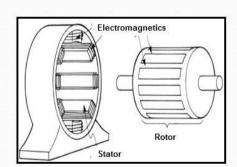
- Squirrel cage: conducting bars in parallel slots
- Wound rotor: 3-phase, doubledistributed winding

Stator

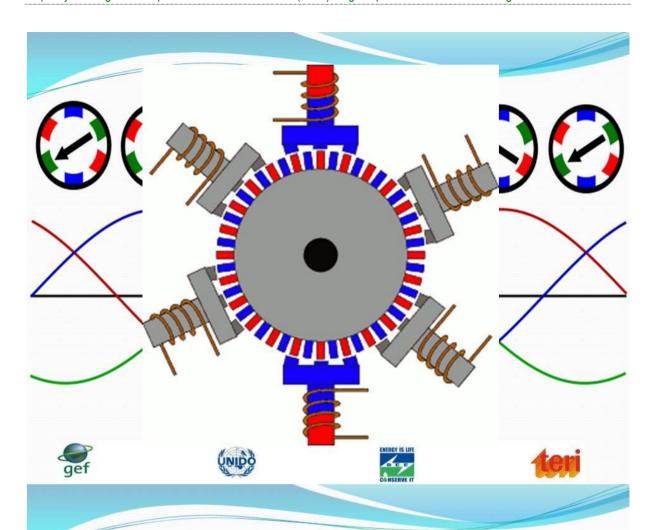
- Stampings with slots to carry 3-phase windings
- · Wound for definite number of poles

22


How Does an Electric Motor Work?



- Electricity supplied to stator
- Magnetic field generated that moves around rotor
- · Current induced in rotor
 - Rotor produces second magnetic field that opposes stator magnetic field
 - Rotor begins to rotate



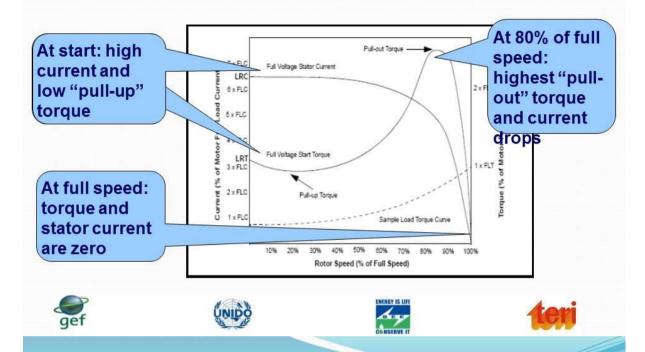
AC Motors – Induction motor

Speed and slip

- Motor never runs at synchronous speed but lower "base speed"
- Difference is "slip"
- Install slip ring to avoid this
- · Calculate % slip:

% Slip = $\frac{Ns - Nb}{Ns} \times 100$

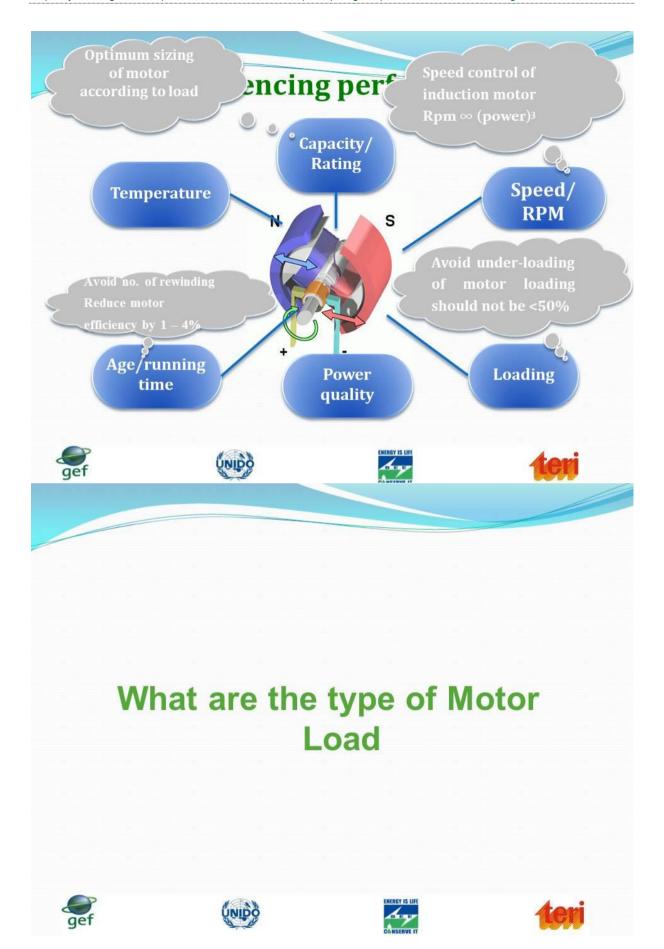
Ns = synchronous speed in RPM Nb = base speed in RPM

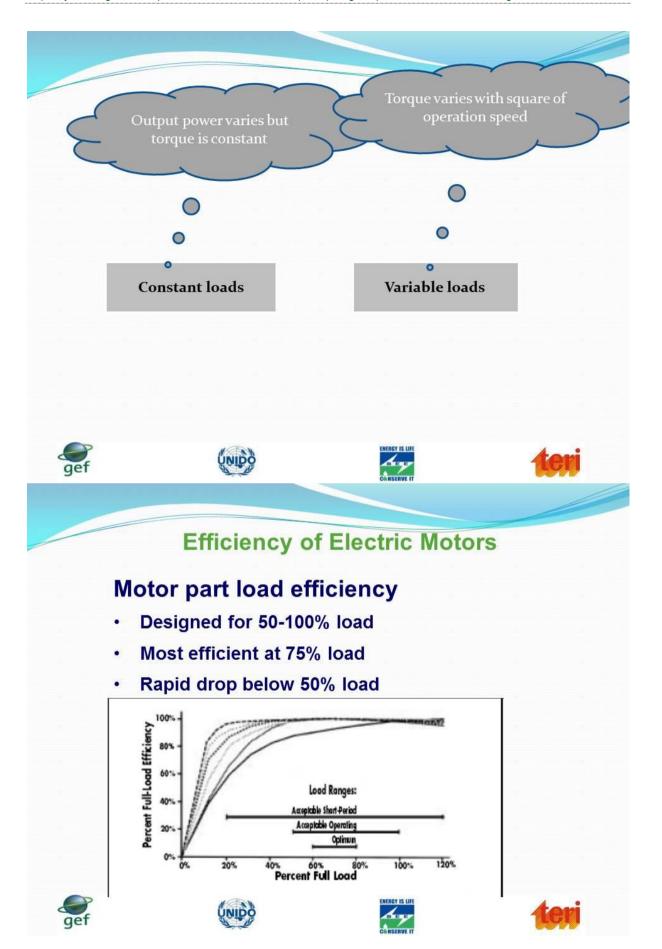


Relationship load, speed and torque

Efficiency of Electric Motors

Motors loose energy when serving a load


- Fixed loss
- Rotor loss
- Stator loss
- Power Input Motor Power Output Load
- Friction and rewinding
- Stray load loss



Motor Load

- Motor load is indicator of efficiency
- Equation to determine load:

Load = $Pi \times \eta$ HP x 0.7457

 η = Motor operating efficiency in % HP = Nameplate rated horse power

Load = Output power as a % of rated power

Pi = Three phase power in kW

Motor Load calculation

Three methods for individual motors

- Input power measurement
 - Ratio input power and rate power at 100% loading
- Line current measurement
 - Compare measured amperage with rated amperage
- Slip method
 - Compare slip at operation with slip at full load

Steps of Motor Load assessment

Input power measurement

Three steps for three-phase motors

Step 1. Determine the input power:

$$Pi = \frac{V \times I \times PF \times \sqrt{3}}{1000}$$

Pi = Three Phase power in kW V = RMS Voltage, mean line to line of 3 Phases

= RMS Current, mean of 3 phases

PF = Power factor as Decimal

Input power measurement

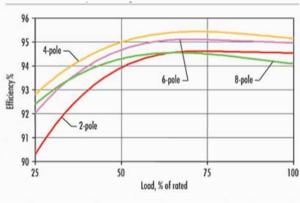
Step 2. Determine the rated power:

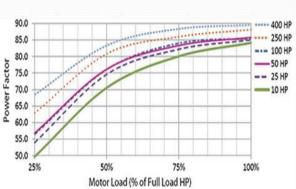
$$P_r = hp \; x \; rac{0.7457}{\eta_r}$$
 Pr = Input Power at Full Rated load in kW = Name plate Rated Horse Power = Efficiency at Full Rated Load

Step 3. Determine the percentage load:

$$Load = \frac{Pi}{P_r} \ x \ 100\% \hspace{1cm} \begin{array}{c} \text{Load} \ = \ \text{Output Power as a \% of Rated Power} \\ \text{Pi} \ = \ \text{Measured Three Phase power in kW} \\ \text{Pr} \ = \ \text{Input Power at Full Rated load in kW} \\ \end{array}$$

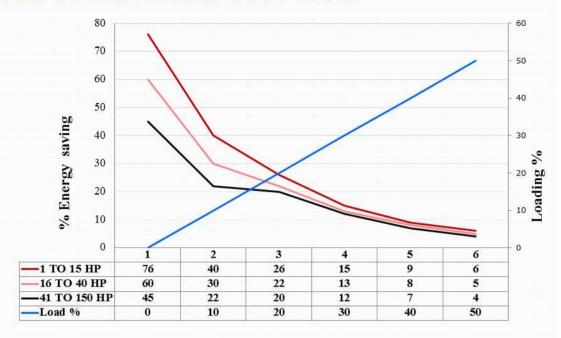
Energy efficiency opportunities in motors



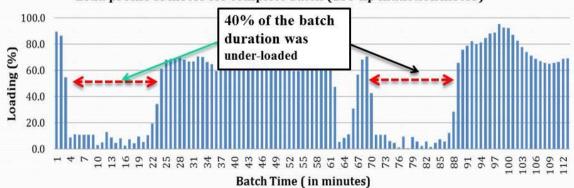


Avoid under-loading of motor

✓ Efficiency and power factor drastically fall down as the loading decreases below 50%



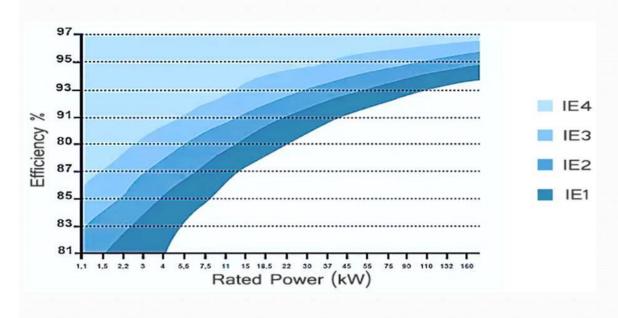
Use of Star delta Convertor



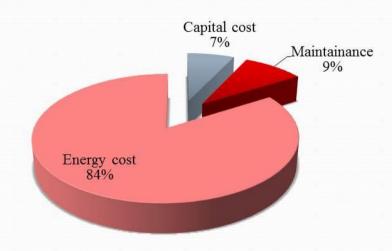
Case study of star-delta convertor

Load profile of motor for complete batch (150 hp induction motor)

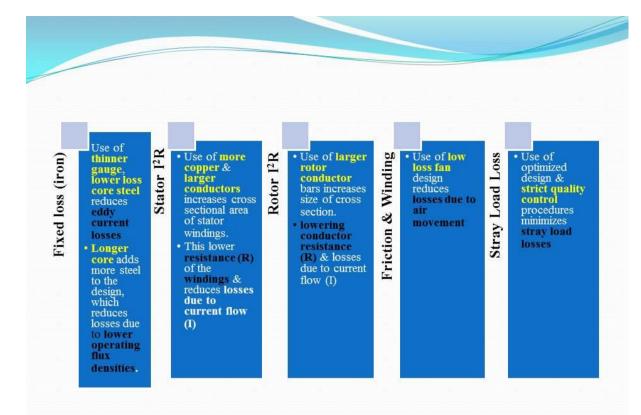
Average saving was estimated to be about 22% with a simple payback period of 9 months



Use of high efficiency motors (IE2, IE3)



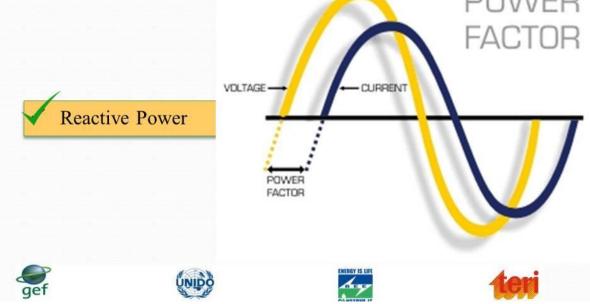
Share of capital cost and running cost

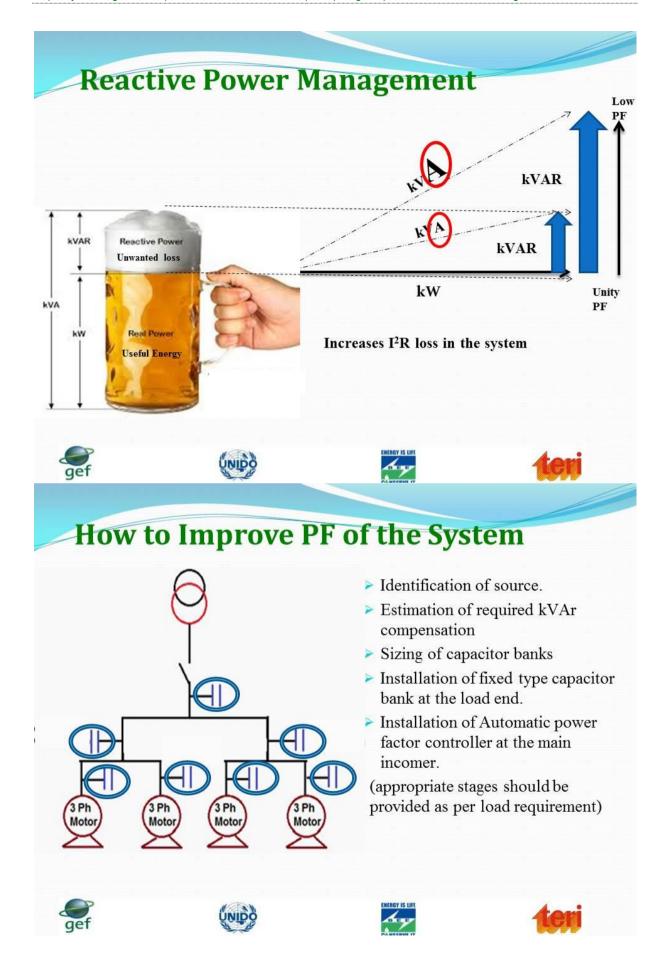


Case Study: Replacement of rewinded standard motors with energy efficient motors

- □ About 37 number of standard efficiency motors of rated 3.7 kW to 22 kW are found to be re-winded.
- Rewinding leads to a drop in the efficiency.
- □ Efficiency improvement with IE3 motor:

➤ Annual Energy Savings : 1.5 Lakh kWh
 ➤ Annual Cost Savings : Rs. 4.58 Lakhs
 ➤ Cost of Implementation : Rs. 12.50 Lakhs
 ➤ Payback Period : less than 3 years





Speed control of induction motor 120 100 80 60 40 100 20 Throttling control 80 % hower consumption % 20 80 100 Rpm/ Speed 60 SAVING 40 -✓ For variable loading, like in case of 20 pump with a variable load can reduce it Speed control flow by lowering its RPM and generate 20 40 80 100 substantial saving Flow % UNIDO Type of Electrical Systems In Industry CURRENT VOLTAGE

Load End Capacitor Requirements

Motor Rating	Capacitor rating (kVAr) for Motor Speed						
(HP)	3000	1500	1000	750	600	500	
5	2	2	2	3	3	3	
7.5	2	2	3	3	4	4	
10	3	(3)	4	5	5	6	
15	3	4	5	7	7	7	
20	5	6	7	8	9	10	
25	6	7	8	9	9	12	
30	7	8	9	10	10	15	
40	9	10	12	15	16	20	
50	10	12	15	18	20	22	
60	12	14	15	20	22	25	
75	15	16	20	22	25	30	
100	20	22	25	26	32	35	
125	25	26	30	32	35	40	
150	30	32	35	40	45	50	
200	40	45	45	50	55	60	
250	45	50	50	60	65	70	

Improve power quality

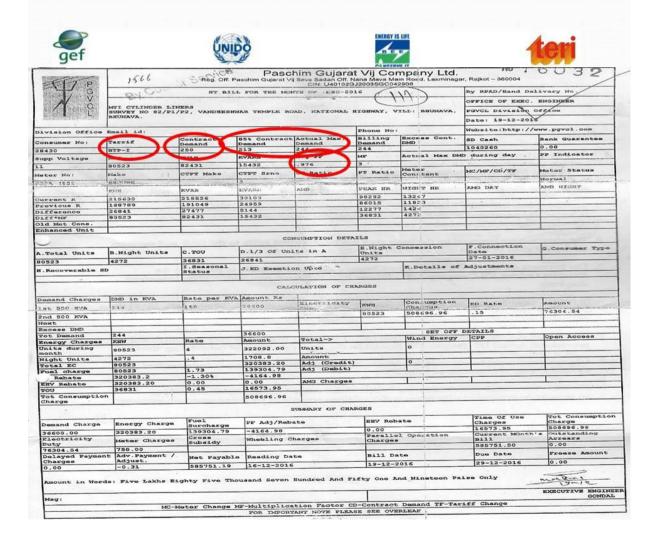
Motor performance affected by

- · Poor power quality: too high fluctuations in voltage and frequency
- · Voltage unbalance: unequal voltages to three phases of motor

Improve power quality

- · Keep voltage unbalance within 1%
- · Balance single phase loads equally among three phases
- Segregate single phase loads and feed them into separate line/transformer

Parameters	Example 1	Example 2	Example 3
Voltage unbalance (%)	0.30	2.30	5.40
Unbalance in current (%)	0.4	17.7	40.0
Temperature increase (°C)	0	30	40



Energy Bill Analysis

Tariff of PGVCL HTP-1

13. RATE: HTP-I

This tariff will be applicable for supply of electricity to HT consumers contracted for 100 kVA and above for regular power supply and requiring the power supply for the purposes not specified in any other HT Categories.

13.1 DEMAND CHARGES:

13.1.1 For billing demand up to contract demand

(a)	For first 500 kVA of billing demand	Rs. 150/- per kVA per month
(b)	For next 500 kVA of billing demand	Rs. 260/- per kVA per month
(c)	For billing demand in excess of 1000 kVA	Rs. 475/- per kVA per month

13.1.2 For Billing Demand in Excess of Contract Demand

For billing demand in excess over the contract demand	Rs. 555 per kVA per month
---	---------------------------

PLUS

13.2 ENERGY CHARGES

For entire consumption during the month				
(a)	Up to 500 kVA of billing demand	400 Paise per Unit		
(b)	For billing demand above 500 kVA and up to 2500 kVA	420 Paise per Unit		
(c)	For billing demand above 2500 kVA	430 Paise per Unit		

13.3 TIME OF USE CHARGES:

For energy consumption during the two peak periods,					
	viz., 0700 Hrs. to 1100 Hrs. and	d 1800 Hrs. to 2200 Hrs.			
(a)	For Billing Demand up to 500 k√A	45 Paise per Unit			
(b)	For Billing Demand above 500 kVA	85 Paise per Unit			

13.4 BILLING DEMAND:

The billing demand shall be the highest of the following:

- (a) Actual maximum demand established during the month
- (b) Eighty-five percent of the contract demand
- (c) One hundred kVA

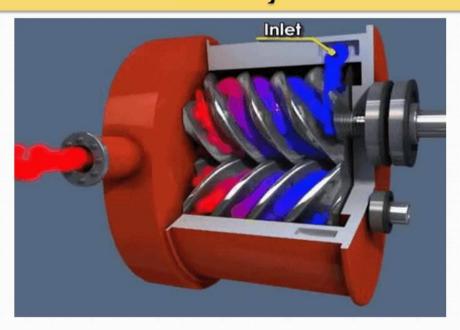
13.6 POWER FACTOR ADJUSTMENT CHARGES:

13.6.1 Penalty for poor Power Factor:

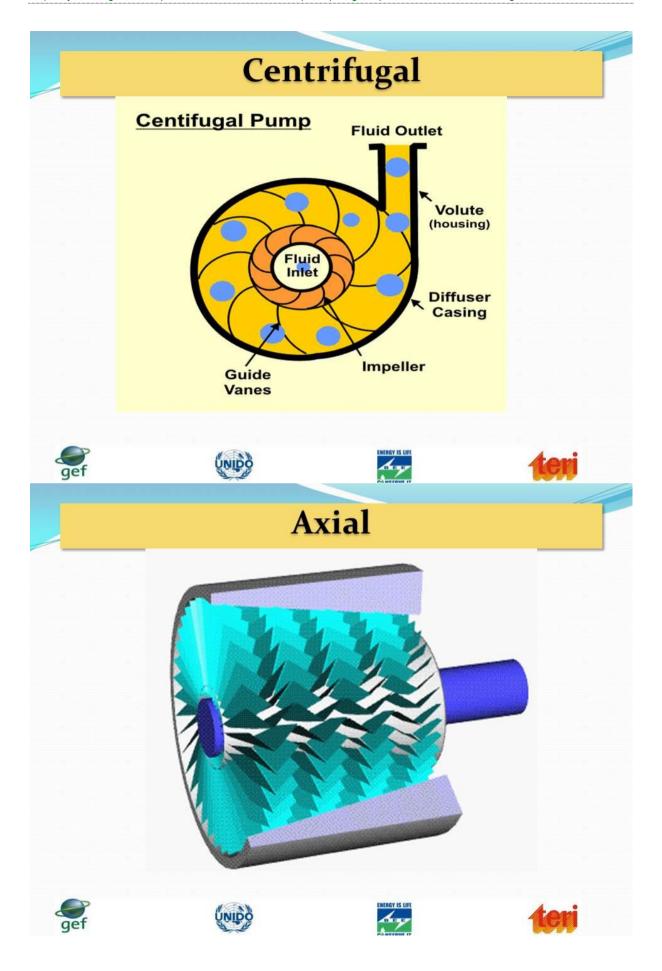
- (a) The power factor adjustment charges shall be levied at the rate of 1% on the total amount of electricity bills for the month under the head "Energy Charges", arrived at using tariff as per para 13.2 of this schedule, for every 1% drop or part thereof in the average power factor during the month below 90% up to 85%.
- (b) In addition to the above clause, for every 1% drop or part thereof in average power factor during the month below 85% at the rate of 2% on the total amount of electricity bill for that month under the head "Energy Charges", arrived at using tariff as per para 13.2 of this schedule, will be charged.

COMPRESSED AIR SYSTEM UNIDO **Basic of Air compressor system** Input power (Electrical) Energy Stored in form of Compression Compressed air (Mechanical) (Potential Energy) Air compressor is an equipment that converts electricity into potential energy stored as pressurized air gef

Reciprocating

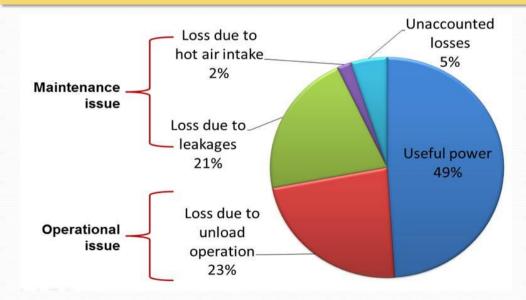


Rotary

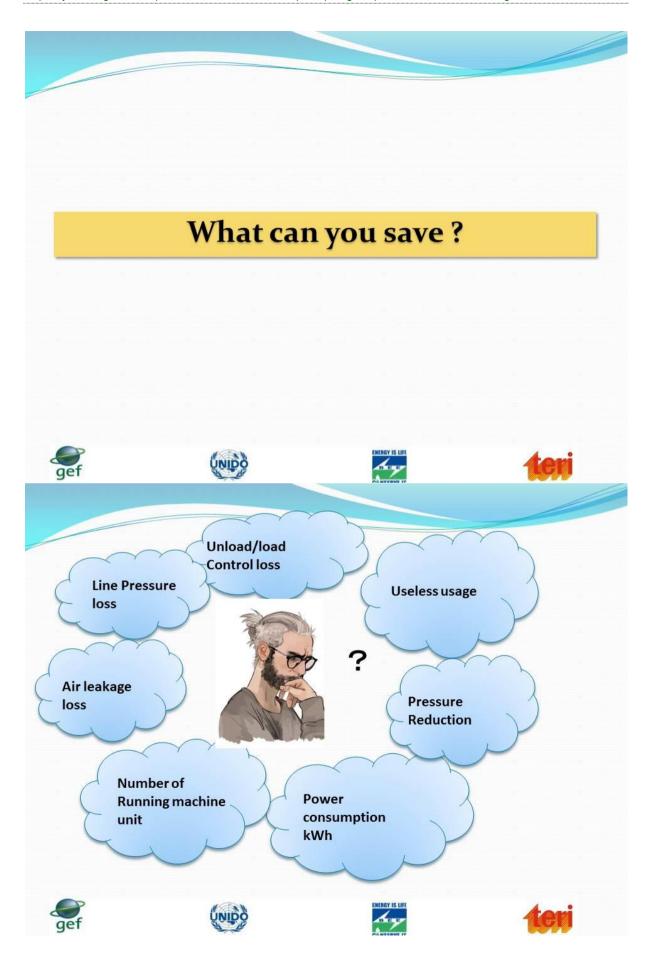


Energy utilized in compressed air

Heat Loss due to compression 70%



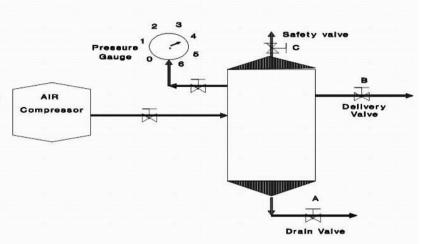
What you do with the stored energy



How can you save?

Assessment of compressor

- Volumetric efficiency/ Free air delivery (FAD)
 - FAD reduced by ageing, poor maintenance, fouled heat exchanger and altitude
 - Energy loss: percentage deviation of FAD capacity
- Leakages
 - Energy waste proportional to input energy
 - Drop in system pressure results in high generation pressure
 - Shorter equipment life



Capacity assessment method

- Isolate compressor and receiver; close receiver outlet
- Empty the receiver and the pipeline from water
- Start the compressor and activate the stopwatch
- Note time taken to attain the normal operational pressure P₂ (in receiver) from initial pressure P₁

Capacity assessment method ... contd.

Calculate the capacity FAD

$$Q = \frac{(P_2 - P_1)}{P_0} x \frac{V}{t}$$

 $Q = Free air delivery (m^3/min)$

 P_2 = Final pressure after filling (kg/cm²a)

 P_1 = Initial pressure after bleeding (kg/cm²a)

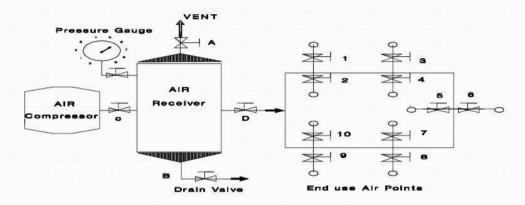
 P_0 = Atmospheric pressure (kg/cm²a)

V = Storage volume including receiver, after cooler and delivery piping (m³)

t = Time take to build up pressure to P₂ (minutes)

•Specific Power Consumption (SPC) i.e. kW/volume flow rate

 \bullet e.g. kW/cfm or kW/m³/min



Leakage Quantification Method

- · System to be on No Load i.e. no usage of compressed air
- · Switch the compressor ON
- · With a stopwatch, note time taken to load and unload the compressor
- · Run test for 30 minutes

Leakage quantification method

Calculate quantity of leakage*

$$Q_L = \frac{Q \times t_{on}}{(t_{on} + t_{off})}$$

Q_L = Leakage quantity(m³/min)

Q = Free air delivery (m³/min)

t_{on} = On load time i.e. loading period (seconds)

t_{off} = Off load time i.e. unloading period (seconds)

In a well maintained system, compressed air leakages are below 10%

*This test is not applicable for VFD based air compressor

Capacity Building of Local Service Providers (LSPs)

Electric motors

Good practices in Operation, Maintenance and Rewinding

Supported by

GEF-UNIDO-BEE Project
Promoting Energy Efficiency and Renewable Energy in selected
MSME clusters in India

Course of training

- 1 Motor selection
 - 2 Motor maintenance & rewinding
 - 3 Good practices in rewinding
 - 4 Best operating practices
 - 5 Basic instruments and tools
 - 6 References

Motor selection

- Cost of operation Life cycle costs
- Proper sizing of motors
- Starting system/controllers
- > Nature of load

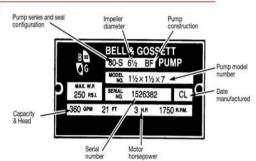
Motor driven systems account for about 55% of global industrial electricity consumption

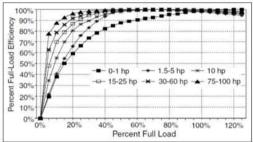
 $Source: IEA\ report\ on\ energy\ efficiency\ policy\ opportunities\ for\ electric\ motor\ driven\ system$

Cost of operation - Life cycle costs

Description	Unit	IE1	IE2	IE3
Motor Load Requirement	kW	13.5	13.5	13.5
Motor Rating	kW	15	15	15
Motor Efficiency at operating load	%	88.7	90.6	91.4
Input Power	kW	15.2	14.9	14.8
Motor loading	%	90.0	90.0	90.0
Annual electricity consumption (@ 5000 hours per year)	kWh/Year	76,099	74,503	73,851
Difference in electricity consumption	kWh/Year	-	1,596	2,248
Increased in running (@ Rs. 6.5 per kWh)	Rs./Year	-	10,373	14,612
Initial investment	Rs.	25,500	29,950	31,875
Increase in Investment	Rs.	-	4,450	6,375
Lifecycle cost (@ 5 Years)	Rs.	24,98,724	24,51,308	24,32,039

Incremental cost of motor (IE3) will be recovered within 5 months.





Proper sizing of motor

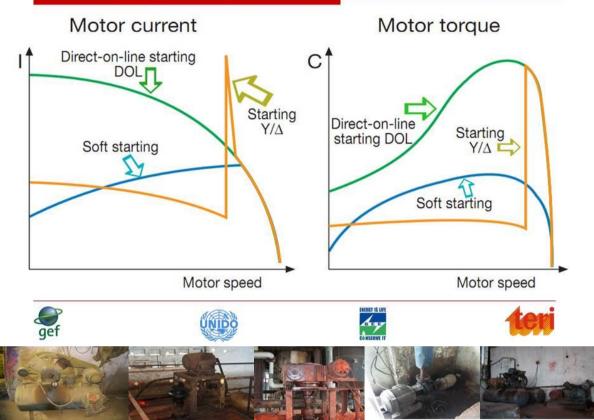
- ☐ Motors are often oversized because of:
 - Uncertainty about load
 - Allowance for load growth
 - Rounding up to the next size
 - Availability
- ☐ Rating of motor determines based on capacity of associated load
 - For example, pump required 3 hp motor, if high rating motor used, power consumption will be more.
- Motor loading should be in the range of 75 95% of rated capacity.

Proper sizing of motor...

Description	Unit	M	otor rating	
Motor Load Requirement	kW	15	15	15
Motor Rating	kW	15	30	55
Motor Efficiency at operating load	%	89	89	84
Input Power	kW	16.9	16.9	17.9
Motor loading	%	100.0	50.0	27.3
Annual electricity consumption (@ 5000 hrs /Yr)	kWh/Year	84,270	84,270	89,286
Difference in electricity consumption	kWh/Year	100 to 400 to 400 to 100 to		5,016
Increased in running (@ Rs. 6.5 per kWh)	Rs./Year	<u>=</u>	=	32,604
Initial investment	Rs.	35,250	70,500	1,29,250
Increase in Investment	Rs.	100 100	35,250	94,000
Total operational cost for first year	Rs.	5,83,003	6,18,253	7,09,607
%age incremental life cycle cost	%	79 311 5 1	6.0	20.5

Apart from high initial and running cost, oversized Motors lead to:

- Higher maximum demand due to poor power factor.
- Higher cable losses, switchgear cost therefore higher installation cost.
- Higher rewinding cost (in case of motor burnout).



Starting system/controllers

Starting system/controllers...

DOL Starter Used up to 5 hp	Y-Δ Starter Used 5 hp to 20 hp	Soft Starter Used above 20 hp
Does not decrease the starting current	Decrease the starting current up to 1/3 times	Decrease the starting current as required
Low cost option	Moderate cost	High cost option
It connect motor directly with supply for starting and running	It connect motor initially in Y for starting and convert in Δ for running	It connect motor directly with supply for starting and running

Nature of load

- ☐ Rated at the speed the shaft will turn in revolutions per minute (rpm) when motor is operating at full speed
- ☐ Rpm of motor should be speed needed to operate equipment at proper speed
- ☐ Duty cycle If the application load is variable in nature or idle time slots, duty cycle become a critical factor in selection of motor

Proper Lubrication

- ☐ Improper lubrication practice can cause bearing failure.
- ☐ Too much lubrication results in churning and higher heat loss.
- ☐ In-sufficient lubrication can increase the component failure due to excessive friction and heat.
- ☐ Oil and grease on the stationary switch contacts may cause them to overheat, arc or burn, and even to weld themselves closed.
- ☐ Lubricants harm many internal motor parts.
- ☐ Use the recommended grade of lubricant, especially in severe duty applications.

Belts and Pulleys

- ☐ The efficiency of mechanical power transmission depends on grip between pulley and belt (Co-efficient of friction μ & strength (Tensile))
- \Box μ (Co-efficient of friction)
 - Rubber coated canvas belts 0.2 or leather belts available earlier
 - V-Belt, effective μ improved up to 0.55.
 - Chrome leather belts, μ improved to 0.7

S. No	Motor HP	Losses %
1	2	8-15
2	3	7-13
3	4	6-12
4	6	5.5-10
5	8	5-9
6	10	4.5-8.2
7	20	3.5-7
8	30	3.2-6
9	40	3-5.5
10	60	2.8-5
11	80	2.5-4.5
12	100	2.5-4.5

Course of training

- 1 Motor selection
- 2 Motor maintenance & rewinding
- 3 Good practices in rewinding
 - 4 Best operating practices
 - 5 Basic instruments and tools
 - 6 References

Preparation of work table

 $\hfill \Box$ Clean your work surface to make sure it's free of dirt and dust

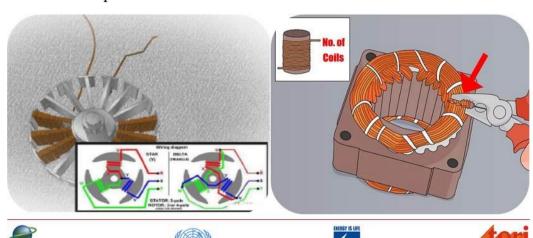
Dismantling to reveal armature and winding

- ☐ Remove the motor housing to reveal the armature, stator, and the windings
- ☐ Deployment of excessive force should be avoided while dismantling the motor housing as these may damage the insulation

Documentation - Existing condition

- ☐ Document the present configuration by taking notes or photographs.
 - Important parameters such as rated current, capacity, type of winding to prevent deviation from design parameters post rewinding.

Removing wire from brush tabs


- ☐ Care should be taken to bend the tabs gently (and as little as possible) to prevent any damage.
- ☐ Also, the wires should be completely removed from the tabs before cutting the coils of the wind.

Cutting the coils

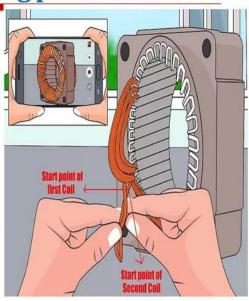

- ☐ The easiest place to cut is at the top of the coils (top of armature and/or stator posts).
- ☐ The number of winds in each coil should be exactly counted to ensure replication.

Check for insulation damage

- If the insulation lining the steel laminate areas is in good condition it should be put back.
- ☐ In case if it's damaged or burned it should be replaced with similar material as specified by the supplier.

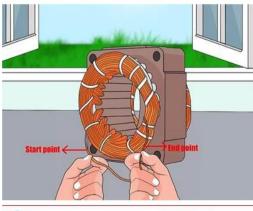
Rewound the Motor

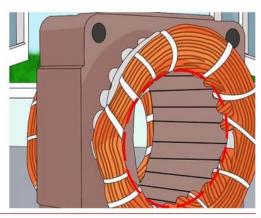
- ☐ Rewind the armature and/or stator using the same gauge and type of magnet wire that was on the original motor.
- ☐ If you're more experienced, you may wish to upgrade your wire's quality, substituting a nylon-and-polyurethane-coated wire for the original enamel-coated wire, for instance.
- ☐ In case if it's damaged or burned it should be replaced with similar material as specified by the supplier.



Recreate the exact winding pattern

- When beginning first winding, leave the end of first winding free but long enough to reach the first tab. The last winding will attach to the same point.
- Crimp all the other windings down as you work to hold the wire in place. You do the winding with one long wire, so don't cut anything as you go.
- ☐ Before you crimp the wire down behind the tabs, use a sharp knife or sandpaper to remove the insulation from the wire at the point where it makes contact with the tab. Make sure you only remove as much insulation as is necessary to create good contact.





Check the following

Connect the end of the last winding and the loose wire you left in the first winding to the tab where you began Check to make sure that none of the wires connecting to the tabs are touching.

Re-assemble the motor housing

☐ Post re-assembly the motor should be run for one to two hours in the rewinding facility to ensure safe operation before being dispatched.

Few Points to Remember

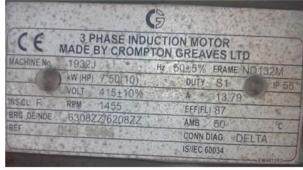
- □ Don't go for rewinding again and again for the same motor : Efficiency typically decreases for every rewinding unless special care is taken during rewinding practice
- ☐ Get the rewinding done through skilled persons having proper repair shop.
- ☐ Make sure the work table is clean and free from dust, dirt, oil and any unwanted particles.
- ☐ While dismantling the winding from slots, care should be taken to prevent use of excessive of force as this may damage the core.
- ☐ It is better to apply heat for easy removal of windings. This heating should be controlled and it should be ensued that the core is not exposed to excessive temperatures beyond specified by OEM.

Few Points to Remember...

- ☐ Important parameters such as power, current, type of winding design, number of turns, wire gauge etc. should be documented carefully to ensure replication of past performance parameters.
- ☐ Use wire of same gauge and material. Don't use aluminum wire in place of copper wire.
- ☐ While removing wire from the brush tabs, care should be taken to bend the tabs gently and as little as possible to prevent any damage. Wires should be completely removed from the tabs before cutting the coils.
- ☐ Damaged insulation should be replaced with the same type and insulation rating as specified by the OEM.
- ☐ The user should insist for efficiency test post rewinding.

Course of training

- 1 Motor selection
- 2 Motor maintenance & rewinding
- 3 Good practices in rewinding
- 4 Best operating practices
 - 5 Basic instruments and tools
 - 6 References

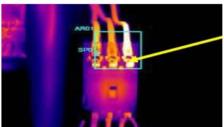

Best operating practices

- · Know your motor name plate
- · Observe condition of electrical contacts
- Maintain good condition of MCC panels
- · Maintain service history card
- · Keep, maintain and practice maintenance schedule
- Adopt predictive maintenance techniques

Know your motor name plate

- ☐ Ensure that there is a name plate on motor
- ☐ Nameplate should be clean and clearly readable
- ☐ Important Information to Note
 - Rated Volts & Full Load Amps
 - Rated Full Load Speed
 - Class of Insulation
 - Rated HP
 - Efficiency at Full Load
 - Power Factor at Full Load

Observe condition of electrical contacts


- ☐ Loose/ corrosive contacts should be identified and attended to prevent any mishap/failure.
- ☐ Visual inspection may not reveal the problem at all.
- ☐ Temperature monitoring by using non contact type infrared cameras should be conducted to ascertain the quality of electrical connections, at least once in a year.
- ☐ More number of inspections will enhance the reliability.

Visual Image No Problem Detected

Thermal Image High Temperature in a Phase

Hot Spot Observed in a Particular Phase of MCC

Maintain good condition of MCC panels

- ☐ Indicators on the MCC panel should always be in operating condition.
- ☐ Connections should be made with proper lugs.
- ☐ Panel doors should always be kept in closed condition.
- ☐ Ensure proper ventilation around MCC panel.

Connections without lugs

Unsafe method of connections from

Properly Maintained MCC Panel - Idea Case

Maintain service history card

- ☐ Type of problem/failure (whether mechanical or electrical)
- ☐ Whether problem solved internally
- ☐ Major action takes
 - Preventive Maintenance,
 - Replacement of Motor or motor parts
 - Rewound

Sample History Card of Motor Stoppage

Motor Id : Location: Motor Rating:

Date	Observation	Type of Failure	Action Taken	Stoppage Time	Comments/ Additional Points
dd/mm/yyyy	Bearing Seizure	Mechanical	Bearing Replaced	4 hours	

Keep, maintain and practice maintenance

Activity	What to Measure/ Observe	How to Measure / Perform	By Whom	Frequency of Measurement
Visual inspection of motor	Abnormal noiseUnusual SmellGeneral Cleanliness	Human sensor such as touch, ear, nose, eye	Shift operator	Everyday
General cleaning	Dirt & dustUnwanted materialImproper ventilation	clean cloths, brushes and tiny blowers	Maintenance Team	Everyday
Check lubrication	 Grease quantity and colour in the cavity Oil level indicator Bearing temperature	Visual observationInfrared gun	Maintenance Team	Once in a week
Check power supply quality	 Phase to phase voltage & current 	Panel display/Cla mp meter	Maintenance Team	Once in a week/Month

Adopt predictive maintenance techniques

Technique	Instruments	Measurable parameters	Diagnosis	Frequency of Measurement
Vibration Monitoring	■ Vibro meter	Vibration at bearing houses	Compare with recommended limit	Once is 3 months
Thermography	■ Thermal imager	Temperature (Thermal image)	Temperature at joint and connections	Once is 12 months
Shock pulse	 Shock pulse meter 	 Amplitude of shock generated at bearing housing 	Bad/damaged bearing, inner or outer race damaged	Once is 6 months

Course of training

- 1 Motor selection
- 2 Motor maintenance & rewinding
- 3 Good practices in rewinding
- 4 Best operating practices
- 5 Basic instruments and tools
- 6 References

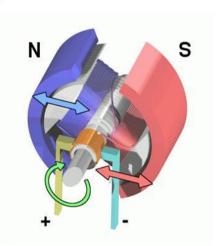
Basic instruments and tools

- Power analyser
 - Voltage, Current, PF and Active Power (kW)
 - Energy loss calculations
 - Unbalance check Voltage and Current

- ☐ Thermal Imager
 - Surface temperature
 - Leakage current /hot spots identification
 - Motor and other equipment performance analysis.

- Multimeter
 - electric current, voltage, and usually resistance,
 - typically over several ranges of value

- ☐ Stroboscope/tachometer
 - revolutions per minute
 (RPM)



Course of training

- 1 Introduction
- 2 Type of electric motors
- 3 Assessment of electric motors
- 4 Energy efficiency opportunities
- 5 Success stories
- 6 References

References

- Energy-Efficiency Policy Opportunities for Electric Motor-Driven Systems (IEA, 2011) https://www.iea.org/publications/freepublications/publication/EE for ElectricSystems.pdf
- Bureau of Energy Efficiency (Government of India), India www.beeindia.gov.in
- The Energy and Resources Institute (TERI), India www.teriin.org
- International Copper Association of India, India www.copperindia.org
- · All India Electric Motor Manufacturers Association (AIEMMA)
- US Department of Energy

www.energy.gov

- New Developments in IEC Standards for Motors Driven by Frequency Converters http://motorsummit.ch/data/files/MS2014/mittwoch/620ms14doppelbauer.pdf
- Motor Challenge Programme (European Commission, 2003) http://iet.jrc.ec.europa.eu/energyefficiency/motorchallenge

